

Original Article

Evaluation of the effect of *Thymus vulgaris* oil on growth and fungal biomass of *Rhizoctonia solani*

Nima Khaledi

Seed and Plant Certification and Registration Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

ARTICLEINFO	A B S T R A C T
Article history	In the present study, we evaluated the antifungal activity essential oil of <i>Thymus vulgaris</i> against <i>Rhizoctonia solani</i>
Submitted: 2020-10-24 Revised: 2020-11-16 Accepted: 2020-12-15	as important pathogen on tomato plants. The <i>T. vulgaris</i> EO was extracted using a Clevenger apparatus. A total of thirteen compounds, representing 98.6 % of the oil were identified by gas chromatography-mass spectrometry (CC MS). The main components of the thermal work
	included thymol (48.9 %), <i>p</i> -cymene (15.8 %), borneol (8.1 %), γ -terpinene (5.7 %), isoborneol (3.7 %) and 4-terpineol (3.2 %) that identified by gas chromatographymass spectroscopy. The minimum inhibitory
K E Y W O R D S	concentration (MIC) values obtained for thyme oil was considerably lower than the values obtained for synthetic fungicides such as Thiabendazole and
Biomass,	Tebuconazole. The results of this evaluation of indicate
Essential oil, Rhizoctonia solani,	that a compound found in thyme oil was effective in reducing growth and fungal biomass. These results
Thiabendazole,	indicate that thyme oil after suitable formulation could
Thymus vulgaris.	be used for the control of soil-borne fungal pathogens of tomato, especially <i>Rhizoctonia solani</i> are common in many parts of the world.

ntroduction

Tomato (Lycopersicon esculentum Mill.) is one of the most important crops in the world. In 2012, the global tomatoes acreage was 4.803 million hectares and tomatoes production 161.793 was million tons (Fao, 2013). R. solani is an important soilborne necrotrophic pathogen, with a broad host range and little effective resistance in crop plants (Foley et al., 2013) and causes a wide range of diseases. This pathogen is the causal agent of crown rot, root rot and damping off in tomato producing areas. to date, R. solani has been characterized and grouped into 14 anastomosis groups (AG) that in pathogenicity, vary morphological characteristics and DNA sequence variations

(Carling et al., 2002). Several AGs of R. solani such as AG 2-1 (Misawa and Kuninaga, 2010), AG 3 (Misawa and Kuninaga, 2010; Charlton et al., 2008), and AG 4 HG I (Kuramae et al., 2003) have been shown to be pathogenic on tomato, the most frequently reported being AG3.

Pathogenic fungi contaminate crops and foods and cause significant yield reduction and economic losses. Several diseases management strategies are available e.g. biological control, resistant cultivars (Takken and Rep, 2010), crop rotation (Gilligan et al., 1996; Kamal et al., 2009) and fungicides (Haggag and El-Gamal. 2012). The most common method for controlling these pathogens is the use of fungicides. Chemical

fungicides are known to be highly effective for diseases management in various plants. However. the alternative control methods are needed because of the negative public perceptions about the use of synthetic chemicals, increasing public concern regarding contamination of fruits and vegetables with fungicidal residues (Vitoratos et al.. proliferation 2013), of resistance in the pathogen populations, and high development of cost new chemicals (Katooli et al.. 2012). Research on plantderived fungicides is now being intensified, since they tend to have low mammalian toxicity, less environmental effects and wide public acceptance (Lee et al., 2007). So, use of nonchemical ecofriendly means of control i.e. biocontrol agents

and secondary metabolites secreted by medicinal plants have emerged as a viable under alternative such (Singh. conditions 2006). Medicinal plants are potential of antimicrobial sources compounds, which could be used in the management of plant diseases (Colpas et al., 2009). Essential oils as antimicrobial agents present main characters: their two natural origin generally means more safety to people and environment; and they can be considered at low risk for microbial development of resistance since they are mixture of compounds which different may present mechanisms of antimicrobial activity (Karbin et al., 2009). The use of plant extracts and essential oils could be a useful alternative synthetic to

fungicides in the management various phytopathogenic of fungi (Gatto et al., 2011). Essential oils have been widely used for bactericidal (Oussalah et al., 2007), antifungal (Silva et al., 2011; Tserennadmid et al., 2011), insecticidal (Essam, 2001; Kim et al., 2003). They contain a variety of volatile molecules such as terpenes and phenol-derived terpenoids. aromatic components and aliphatic components (Bakkali et al., 2008). Although several oils been essential have reported to have antifungal properties, few have been developed commercial as formulations for use in plant disease control. Application of essential oils is a very attractive method for controlling plant diseases. Essential oils and their components are gaining

increasing interest because of their relatively safe status, their wide acceptance by consumers, and exploitation for potential multi-purpose functional uses (Ormancey et al., 2001).

The genus Thymus comprising of around 300 species of perennial, aromatic and subshrubs herbs is predominantly found in Mediterranean region, Asia, Southern Europe and North Africa (Maksimovic et al., 2008). Some studies have reported that thyme essential oil possesses a high level of the phenolic precursors, *p*-cymene and γ -terpinene, probably due to its early flowering time (Saez 1998). In previous studies, antimicrobial (Sienkiewicz et al., 2012), antifungal (Tullio et al., 2007) effects of this plant have been demonstrated.

although there still exist a little information in the literature about the possible mechanisms of action of thyme oil and its Therefore. components considering the important antimicrobial potential of the genus Thymus, together with evidence that the essential oil of T. vulgaris shows one of the best antifungal profiles. Therefore, the objectives of the present investigation were (i) elucidating antifungal mode of thyme oil action and (ii) identify the oil essential components of effective and (iii) evaluate activity of oil against pathogen in vivo.

Materials and Methods

Plant pathogenic fungus

The isolates of Rhizoctoniasolani anastomosis group (AG)3(obtained fromPhytopathology Laboratory in

Ferdowsi University of Mashhad, Iran), the causing root rot and damping off on tomato was used. The fungus isolates were maintained on potato dextrose agar (PDA) medium slants at 4°C, and subcultured at monthly intervals.

Plant material and extraction of essential oil

For the extraction of essential oil, leaves of Thymus vulgaris were collected September and October 2020 from Tehran province, Iran. The leaves were washed with water and finally with distilled water to remove dust and dried under shade at room temperature for 3 days. For isolation of the essential oil. 200 g of dried plant materials subjected were to hydrodistillation for about 3 h, using a Clevenger apparatus. The oils were dried over anhydrous Na₂SO₄ and preserved in sealed

glass bottles and protected from the light by wrapping in aluminum foil and stored at 4 °C until used.

Gas chromatography-mass spectrometry (GC-MS) analysis of *T. vulgaris* essential oil

GC analysis of the oil was done by a Shimadzu GC-MS model **OP 5050 chromatograph DB-5** MS capillary column (30m \times 0.2 mm. film thickness 0.32 um). Helium was used as carrier gas at a flow rate 1.2 mL min⁻¹ with injection volume of 0.1µL. injector and detector temperatures were both at 280°C. Oven temperature was kept at 60°C for 1 min, gradually raised to 200°C at 3°C min⁻¹ and finally raised to 250 °C at 2°C min⁻¹. Retention indices were determined by using retention times of nalkanes that had been injected after the oil under the same chromatographic conditions. The components of the essential oils were identified by comparison of their retention indices with those published in the literature (Nezhadali et al., 2010, 2012; Adams. 2009).

Growth inhibition assay in culture medium

The tests were performed using the medium agar assay described by Tatsadjieu et al., (2009)with some modifications. PDA medium with different concentrations of essential oil (0-2000 ppm) were prepared by adding appropriate quantity of essential oil to melted medium, followed by addition of Tween-20 (100µL to 100 mL of medium) to disperse the oil in the medium. Each Petri-dish was inoculated at the center with a mycelial

disc (10 mm diameter) taken at the periphery of pathogens colony grown on PDA for 120 h. Positive control (without essential oil) plates were inoculated following the same Plates procedure. were incubated at 27±1°C for 7 day and the colony diameter was recorded each dav. The mycelial growth inhibition (MGI) percentage was calculated according to the following formula:

$$MGI = \frac{d_c - d_t}{d_c} \times 100$$

Where, D_c = mean diameter of colony in the control (mm) and D_t = mean diameter of colony in the treatment (mm). Three replicate plates were used per treatment and the experiment was repeated three times.

Nature of toxicity of essential oils The nature of toxicity (fungistatic/fungicide) of the oils against fungi was determined as described by Thompson (1989). The inhibited fungal mycelia plugs of the oil treated sets were reinoculated into fresh medium and revival of their growth was investigated.

Determination of minimum inhibitory concentration (MIC), minimum fungicidal concentration (MFC) and inhibitory concentration 50 (IC50)

MIC and MFC of essential oil was determined described as bv Plodpai et al., (2013) and Tyagi and Malik (2010)with few modifications. The PDA plates were amended with various concentrations of essential oil (0-2000 ppm). For enhancing the essential oil solubility, Tween-20, 0.5% (v/v) was added. Each plate was inoculated with a mycelial plug (10 mm diameter) of

All plates pathogens. were incubated in triplicate for each concentration at $25\pm1^{\circ}$ C for 144 h. Plates with Tween-20 but without any essential oil were used as control. Observation of fungal growth was done at a time interval of 12 h up to 144 h after incubation. The MIC values were determined as the lowest concentration of essential oil that completely visible prevented the fungal growth.

To determine MFC. the mycelial plugs were obtained from each Petri dish treated with the oil concentrations lower than MIC, cultured on PDA and incubated at 25±1°C for 96 h. MFC was defined as the lowest concentration at which no colony growth was observed after subculturing into fresh PDA medium. IC50 (concentration that produces a 50%) inhibitory effect) values were graphically calculated from the dose-response curves based on measurement at various concentrations.

Comparing the fungitoxicity of essential oil with some prevalent synthetic fungicides

The efficacy of the essential oil was compared with some common fungicides, such as Thiabendazole (Tecto) and Tebuconazole (Raxil) by the agar medium assay.

Effects of essential oil on biomass production

To determine the effect of essential oil on the fungi biomass production, various concentrations of essential oil in 50 mL of Potato Dextrose Broth (PDB) medium were prepared in conical flasks and inoculated with a mycelia disc (10 mm diameter) of *R. solani*. The flasks were incubated on a rotary shaker with 100 rev min⁻¹. The Dry

mycelium weight of was determined after 10 days of incubation on PDB medium. Flasks containing mycelia were autoclaved and subsequently filtered through filter papers (Whatman No.1). The mycelia were washed several times with distilled water and allowed to dry at 40±1°C overnight. The filter paper containing dry mycelia were weighed. Percent growth inhibition based on dry weight was calculated as (Siripornvisal 2010):

$$\% inhibiton = \frac{W_0 - W}{W_0} \times 100$$

Where, W_0 and W are dry weight of control and dry weight of sample, respectively.

Statistical analysis

Data were subjected to analysis of variance (ANOVA) for a completely randomized design with four replicates using SPSS (version 21) software. The means were separated using Duncan's multiple range tests at P < 0.05, where the F-value was significant.

Results

Composition of the Essential oil

The chemical composition essential oil obtained from T. vulgaris, as determined by GC-MS analysis is shown in Table 1. Thirty compounds were identified in the oil which constitutes about 98.6% of this oil. The essential oil was characterized by the presence of major compounds such as thymol (48.9 %), *p*-cymene (15.8 %), borneol (8.1 %), γ -terpinene (5.7 %), isoborneol (3.7 %) and 4terpineol (3.2 %). Nezhadali et al. (2012) analyzed the essential oil of T. vulgaris originating from Iran, and they detected 36 compounds, including thymol (45.4%), p-(13.4%), cymene γ-terpinene

(6.9%), borneol (6.6%), 4-terpineol

(2.9 %) and isoborneol (4.2%).

No.	Compound name	RI ^a	Composition (%)
1	α-Thujene	951	0.1
2	α-Pinene	957	0.1
3	Camphene	970	0.7
4	β-Pinene	992	0.1
5	β-Myrcene	1006	1.4
6	α-Phellandrene	1018	0.3
7	α-Terpinene	1032	0.2
8	<i>p</i> -Cymene	1053	15.8
9	γ-Terpinene	1090	5.7
10	<i>cis</i> -β-Terpineol	1092	0.6
11	Terpinolene	1103	0.2
12	Linalool	1117	2.1
13	Isopulegol	1135	0.5
14	Camphor	1162	1.7
15	Borneol	1187	8.1
16	4-Terpineol	1193	3.2
17	Isoborneol	1198	3.7
18	Thymol methyl ether	1254	1.3
19	Verbenone	1268	0.1
20	α-Terpineol	1279	0.2
21	Dihydro carvone	1293	0.1
22	Thymol	1380	48.9
23	Eugenoi	1400	0.3
24	Geranyl acetone	1453	0.4
25	GermacreneD	1509	0.8
26	γ-Elemene	1515	0.1
27	β-Bisabolene	1538	0.7
28	δ-Cadinene	1551	0.2
29	Caryophyllene oxide	1588	0.1
30	Spathulenol	1608	0.9
	Total	-	98.6

^a RI: Retention index calculated on the basis of retention time of a mixture of n-alkanes (C8–C30).

Biological activity of essential oils depends on their chemical composition, which is determined by the plant genotype and is greatly influenced by several factors such as geographical origin and environmental and agronomic conditions (Rota et al., 2004). In addition antibacterial activity depends on the type, composition and concentration of the essential oils, the type and concentration of the target microorganism, the composition of the substrate, the processing the and storage conditions (Ceyhan et al., 2012).

Antifungal activity of essential oil on mycelial growth *in vitro*

The effect of different concentrations of thyme oil on mycelial growth of *R. solani* is shown in Figure 1. The thyme oil inhibited the growth of pathogens in a dose dependent manner. Our results revealed that the antifungal activity of this essential oil increased with increasing the concentration (Table 2).

Fungi	R. solani			
Treatments		$IC50^a$	MFC^b	MIC ^c
Essential oil				
T. vulgaris		500	1250	1050
-				
Fungicides				
Thiabendazole		800	1500	1500
Tebuconazole		1750	IN	3000

Table 2. In vitro antifungal activity of the essential oil of *T. vulgaris* compared to synthetic fungicides against mycelial growth of *R. solani*.

^a Inhibitory concentration with 50% inhibitory effect on the fungal growth (ppm)

^b Minimum fungicidal concentration (ppm)

^c Minimum inhibitory concentration (ppm)

IN: Ineffective

Minimum concentration of the thyme oil required to completely inhibit the mycelial growth of fungi was different (Figure 1). R. solani did not show any visible mycelial growth in presence of thyme oil at concentration of 1000 and 800 respectively. ppm, Investigating fungistatic and/or fungicide activity revealed that the thyme oil had fungicidal properties against R. solani at 1250 ppm concentration. The minimum inhibitory concentrations of synthetic fungicides including Thiabendazole and Tebuconazole against both fungi were found to be 2000 and 1500 ppm, respectively, which were higher than that of the essential oils tested in present study (Table 2).

Effects of essential oil on biomass production

The effects of essential oil on biomass production of fungi were evaluated in liquid cultures. Results showed that essential oil in culture medium caused considerable reduction of the fungal biomass (Table 3). with In general, increase concentration of thyme oil, the fungi of biomass amount declined. The maximum reduction in biomass of R. solani was related to the effect of thyme oil at concentration of 1400 ppm. It is thus reasonable that a little growth the fungus should be detected during longer incubation times. However, this phenomenon should be intensively studied in further research. Siripornvisal (2010)showed that the supplement of ajowan oil in

culture medium caused considerable reduction of the fungal biomass and It should be noted that supplement of ajowan oil at the MIC level $(240 \ \mu g \ mL^{-1})$ did not completely suppress the biomass production.

Table 3. Effects of thyme oil on biomass production *R. solani*.

Concentration of	R. solani				
thyme oil	Dry weight ^a (mg)	% inhibition			
(ppm)					
0	279	0^{g}			
200	251	11.2 ^f			
400	213	23.6 ^e			
600	185	33.7 ^{de}			
800	146	46.7 ^d			
1000	88	68.4 ^c			
1200	31	88.9 ^b			
1400	0	100 ^a			
1500	0	100 ^a			

^a means of triplicate samples

The results are means \pm standard errors of four replications. Means within a column indicated by the same letter were not significantly different according to Duncan's multiple range test at the level P <0.05.

Discussion

In the present study, the antifungal capability of essential oil obtained from *T*. *vulgaris* against *R. solani* was investigated using *in vitro* assays. The obtained data revealed that thyme oil used in this study had considerable

inhibition effect on mycelial growth of *R. solani* in agar medium assay compared to the controls. The minimum concentration of the oil required to inhibit the mycelial growth of test fungi was difference. It is evident that the inhibitory effect of the oil on mycelial growth of fungi varied

fungal the species. among Thyme oil showed the best activity against R. solani exhibiting MIC value of 1050 ppm. The results showed that the antifungal activity of the essential oil increased with an increase in concentration, de Lira Mota et al., (2012) while reported that antifungal activity of T. vulgaris essential oil against Rhizopus oryzae, the MIC of essential oil and thymol varied 128–512 μ g mL⁻¹, but the MFC of essential oil and thymol varied 512-1024 µg mL⁻¹and 128–1024 µg mL⁻¹, respectively. The results also showed that essential oil of T. vulgaris and thymol significantly inhibited mycelial development and germination of sporangiospores. Nzeako et al., (2006) show that thyme oil failed kill extract to

Staphylococcusaureus,SalmonellacholeraesuisorKlebsilelapneumoniabutstoppedthegrowthofPseudomonasaeruginosaandCandidaalbicans.

Investigating fungistatic and/or fungicidal effects of the essential oil showed that the thyme oil at a concentration of 1250 had fungicidal activity *R*. solani. The against minimum inhibitory concentration values obtained for essential oil used in this assay was considerably lower than the values obtained for synthetic fungicides such as Thiabendazole and Tebuconazole. de Lima Houinsou al.. et (2012)that the **MFCs** reported determined from this essential oil of Ocimum gratissimum against pathogenic fungi

isolated from tomato were respectively for *Fusarium oxysporum*, *F. graminearum*, *F. poae* and *Aspergillus niger*; 200, 400, 800 and 1600 ppm, respectively, the last one which exhibited the highest resistance (de Lima Houinsou et al., 2012).

The present data also revealed significant decrease in fungal biomass of all treatments having various concentrations of essential oil control. compared to Antifungal activity of thyme oil had been previously reported against several phytopathogenic fungi, including R. solani (Lee et al., 2007) which are in accordance to our data. T. vulgaris of essential oil was rich in Thymol (48.9 %), o-cymene (15.8 %). Shabnum and Wagay (2011) analyzed the essential oil of T.

vulgaris and they detected 30 compounds the maior components thymol were (46.2%), γ -terpinene (14.1%), *p*-Cymene (9.9%),linalool (4.0%), myrcene (3.5%), α -Pinene (3%) and α -thujene (2.8%). According to Burt (2004), thyme oil consists of 10% - 64% thymol and 10% -56% *p*-cymene. The terpenoids are a large group of antimicrobial compounds that are active against a broad spectrum of microorganisms, with the active most monoterpenoids identified so far being carvacrol and thymol. The antimicrobial activity of carvacrol, thymol, linalool, and menthol were evaluated against Listeria monocytogenes, aerogenes, E. Enterobacter Pseudomonas coli. and aeruginosa. The most active compound carvacrol was

followed by thymol with their highest MIC being 300 and 800µg mL⁻¹, respectively (Bassole et al., 2010). These results confirm the high antimicrobial activity of a broad collection of terpenoids, and because their chemical structures are closely related to that of terpenes, the increased activity compared to terpenes can be attributed to the functional moieties (Hyldgaard et al., 2012). The mode of action of thymol, a phenolic monoterpenoid and one of the major constituents of thyme oil, has received much attention from researchers. Thymol is structurally very similar to carvacrol, having the hydroxyl group at a different

position on the phenolic ring. The antimicrobial action of phenolic compounds, such as thymol and carvacrol, are expected to cause structural and functional damages to the cytoplasmic membrane (Sikkema et al., 1995).

In conclusion, thyme oil could be applied as an alternative to synthetic fungicides for the control of *R. solani*. According to the surveys conducted, thyme oil contains effective compounds antifungal against phytopathogenic fungi. These results indicate that thyme oil with suitable formulation could be used to control of tomato disease.

Sponsor: This research has not received any financial support from funding organizations.

Derived from thesis/dissertation: This article is not derived from thesis/dissertation.

Conflict of interest: According to the author's statement, this article has no conflict of interest.

References

- Adams RP, (2009)
 "Identification of essential oils components by gas chromatography/mass spectroscopy" Allured publishing Corporation, Carol Stream, Illinois, USA.
- Bakkali F, Averbeck S, Averbeck D, Idaomar M, (2008) "Biological effects of essential oils – A review", Food Chem Toxic. 46: 446-475.
- Bassole IHN, Lamien-Meda A, Bayala B, Tirogo C, Franz C, Novak J, Nebie RC, Dicko MH, (2010) "Composition and antimicrobial activities of Lippia multiflora Moldenke, piperita Mentha L. and Ocimum basilicum L. essential oils and their major monoterpene alcohols alone

and in combination" Molecules. 15: 7825-7839.

- Burt S, (2004) "Essential oils: Their antibacterial properties and potential application in foods e a review" International Journal of Food Microbiology. 94: 223-253.
- Carling DE, Kuninaga S, Brainard KA (2002) "Hyphal anastomosis reactions, rDNAinternal transcribed spacer virulence sequences, and levels among subsets of Rhizoctonia solani anastomosis group-2 (AG-2) and AG-BI" Phytopathology. 92:43-50.
- Ceyhan N, Keskin D, Uğur A, (2012) "Antimicrobial activities of different extracts of eight plant species from four different family against some pathogenic microoorganisms"

Journal of Food, Agriculture & Environment. 10: 193-197.

- Charlton ND. CarboneI Tavantzis SM. Cubeta MA (2008)"Phylogenetic relatedness of the M2 doublestranded RNA in Rhizoctonia fungi" Mycologia. 100:555-564
- Colpas FT, Schwan-Estrada KRF, Stangarlin JR, Ferrarese ML, Scapim CA, Bonaldo SM, (2009) "Induction of plant defense responses by Ocimum gratissimum L. (Lamiaceae) leaf extracts" Summa Phytopathologica. 35:191-195.
- de Lima Houinsou R, Ahoussi
 E, Sessou P, Yèhouénou B,
 Sohounhloué D, (2012)
 "Antimicrobial activities of essential oil extracted from leaves of Ocimum gratissimum L. against

pathogenic and adulterated microorganisms associated to tomato in Benin" International Journal of Biosciences. 2: 90-100.

- de Lira Mota KS, de Oliveira Pereira F, de Oliveira WA, Lima IO, de Oliveira Lima E. (2012) "Antifungal activity of Thymus vulgaris L. essential oil and its constituent phytochemicals against Rhizopus oryzae: interaction with ergosterol" Molecules. 17:14418-33.
- Essam E, (2001) "Insecticidal activity of essential oils: octopaminergic sites of action" Compo Biochem Physiol C Toxicol Pharmacol. 130: 325-337.
- Foley RC, Gleason CA, Anderson JP, Hamann T, Singh KB, (2013) "Genetic and Genomic Analysis of

R

RhizoctoniasolaniInteractions with Arabidopsis;EvidenceofResistanceMediatedthroughNADPHOxidases"PLoSONE.8(2):e56814.

- Food and Agricultural Organization of the United Nations. 2013. FAOSTAT, Available from: http://www.fao.org/docrep/018/i 3107e/i3107e00.htm.
- Gatto MA, Ippolito A, Linsalata V, Cascarano NA, Nigro F, Vanadia S, Di Venere D (2011) "Activity of extracts from wild edible herbs against postharvest fungal diseases of fruit and vegetables" Postharvest Biol Technol. 61: 72-82.
- Gilligan CA, Simons SA, Hide GA, (1996) "Inoculum density and spatial pattern of Rhizoctonia solani in fields of Solanum tuberosum: effects of

cropping frequency" Plant pathology. 45:232-244.

- Haggag KHE. El-Gamal NG, (2012) "In vitro study on Fusarium solani and Rhizoctonia solani isolates causing the damping off and root rot diseases in tomatoes" Nature and Science. 10:16-25.
- Hussain J, Jamila N, Gilani
 SA, Abbas G, Ahmed S,
 (2009) "Platelet ggregation, antiglycation, cytotoxic, phytotoxic and antimicrobial activities of extracts of Nepeta juncea" Afr J Biotechnol. 8: 935-940.
- Hyldgaard M, Mygind T,
 Louise MR, (2012) "Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components" Front Microbiol. 3: 12.
- Karbin S, Baradaran Rad A, Arouiee H, Jafarnia S, (2009)

"Antifungal activities of the essential oils on post-harvest disease agent Aspergilus flavus" Adv Environ Biol. 3: 219-225.

- Katooli N, Maghsodlo R, Honari H, Razavi SE, (2012)
 "Fungistatic activity of essential oil of Thyme and Eucalyptus against of postharvest and soilborne plant pathogenic fungi" Global Journal of Medicinal Plant Research. 1: 1-4.
- Kim SI, Roh JY, Kim DH, Lee _ HS. YJ. Ahn (2003)"Insecticidal activities of aromatic plant extracts and essential oils against Sitophilus oryzae and Callosobruchus chinensis" J Stored Prod Res. 39: 293-303.
- Kuramae EE, Buzeto AL, Ciampi MB, Souza NL, (2003)
 "Identification of Rhizoctonia

solani AG 1-IB in lettuce, AG 4 HG-I in tomato and melon, and AG 4 HG-III in broccoli and spinach, in Brazil" Eur J Plant Pathol. 109:391-395.

- Lee SO, Choi GJ, Jang KS, Kim JC, (2007) "Antifungal activity of five plant essential oils as fumigant against postharvest and soilborne plant pathogenic fungi" Plant Pathology Journal. 23: 97-102.
- Maksimovic Z, Stojanovic D, Sostaric I, Dajic Z, Ristic M, (2008) "Composition and radical-scavenging activity of Thymus glabrescens Willd. (Lamiaceae) essential oil" J Sci Food Agr. 88: 2036-2041.
- Misawa T, Kuninaga S, (2010)
 "The first report of tomato foot rot caused by Rhizoctonia solani AG-3 PT and AG-2-Nt and its host range and molecular characterization"

P

Journal of General Plant Pathology. 76: 310–319.

- Nezhadali A, Akbarpour M, _ Zarrabi Shirvan B, Mousavi M, (2010) "Comparison of volatile organic compounds of Thymus vulgaris using hydrodistillation and headspace solid phase microextraction gas chromatography mass spectrometry. J Chin Chem Soc. 57: 40-43.
- Nezhadali A. Nabavi M. M. Rajabian, (2012)"Chemical Composition of the oil of essential Thymus vulgaris L. from Iran. Journal of Essential Oil Bearing Plants" 15: 368-372.
- Nzeako BC, Al-Kharousi ZSN, Al-Mahrooqui Z (2006)
 "Antimicrobial activities of Clove and Thyme extracts"
 Sultan Qaboos University Medical Journal. 6: 33-39.

- Ormancey X, Sisalli S, Coutiere P, (2001) "Formulation of essential oils in functional perfumery" Parfums Cosmetiques Actualites. 157: 30-40.
- Oussalah M, Caillet S, Saucier 1. Lacroix M. (2007)"Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E. coli 0157:H7. Salmonella typhimurium, Staphylococcus aureus and Listeria monocytogenes" Food Control. 18: 414-420.
- Plodpai P, Chuenchitt S, Petcharat V, Chakthong S, Voravuthikunchai SP, (2013)
 "Anti-Rhizoctonia solani activity by Desmos chinensis extracts and its mechanism of action" Crop Protection. 43: 65-71.
 - Rasooli I, Abyaneh MR (2004) "Inhibitory effects of Thyme

oils on growth and aflatoxin production by Aspergillus parasiticus" Food Control. 15: 479-483.

- Rota, C, Carramiñana JJ, Burillo J, Herrera A, (2004)
 "In vitro antimicrobial activity of essential oils from aromatic plants against selected foodborne pathogens" Journal of Food Protection. 67: 1252-1256.
- Saez FJ, (1998) "Variability in essential oil from populations of Thymus hyemalis Lange in southeastern Spain" J Herbs Spices & Med Plants. 5: 65-76.
- Shabnum S. Wagay _ MG. (2011)"Essential oil of composition Thymus vulgaris L. and their uses" Journal of Research and Development. 11: 83-94.
- Sienkiewicz M, Lysakowska
 M, Denys P, Kowalczyk E,

(2012) "The Antimicrobial activity of thyme essential oil against multidrug resistant clinical bacterial strains" Microb Drug Resis. 18: 137-148.

- Sikkema J, De Bont JAM,
 Poolman B, (1995)
 "Mechanisms of membrane toxicity of hydrocarbons"
 Microbial Rev. 59: 201-222.
- Silva E, Ferreira S, Duarte A, Mendonca DI, Domingues EC, (2011) "Antifungal activity of Coriandrum sativum essential oil, its mode of action against Candida species and potential synergism with amphotericin B" Phytomedicine. 19: 42-47.
- Singh HB, (2006)
 "Trichoderma: A boon for biopesticide industry"
 Mycology and Plant Pathology. 36: 373-384.

- Siripornvisal S, (2010)
 "Antifungal activity of Ajowan oil against Fusarium oxysporum" KMITL Sci Tech J. 10: 45-51.
- Takken F, Rep M, (2010) "The arms race between tomato and Fusarium oxysporum (Review)" Mol Plant Pathol. 11:309-314.
- Tatsadjieu NL, Jazet Dongmo PM, Ngassoum MB, Etoa F-X, Mbofung CMF, (2009) "Investigations on the essential oil of Lippia rugosa from Cameroon for its potential use as antifungal agent against Aspergillus flavus" Link ex. Fries. Food Control. 20: 161-166.
- Thompson DP, (1989)
 "Fungitoxic activity of essential oil components on food storage fungi"
 Mycologia. 81:151–153.