

Original Article

The important medicinal and industrial properties of *Calotropis procera* (Aiton) W.T.

Zahra Mohebi

Assistant Prof., Department of Natural Resources, Faculty of Agricultural Sciences & Natural Resources, Razi University, Kermanshah, Iran

ARTICLEINFO	A B S T R A C T
Article history Submitted: 2020-09-15 Revised: 2020-10-23 Accepted: 2020-11-29	Calotropis (<i>Calotropis procera</i> (Aiton) W. T.) is a spreading shrub or medium-sized tree reaching 2.5 to 6 m in height. It has a deep taproot, 3-4 m deep, and a secondary root system with woody lateral roots that may rapidly regenerate adventitious shoots when the plant is injured. The stems are crooked and covered with a fissured corky bark. The grey-green leaves are 15-30 cm long and 2.5-10 cm broad and have a succulent and waxy appearance, hence the name procera, which means wax in latin. Compounds derived from the plant have been found to have emetic-cathartic and digitalic properties. The principal active compounds are asclepin and mudarin. Other compounds have been found to have bactericidal and vermicidal properties. The root bark is an emetic. An infusion of bark powder is used in the treatment and cure of leprosy and elephantiasis. The extremely poisonous roots are used in the treatment of snakebites. The leaves are used for the treatment of asthma. The milky sap is used as a rubefacient and is also strongly purgative and caustic. The latex is used for treating ringworm, guinea worm blisters, scorpion stings, venereal sores and ophthalmic disorders, it is also used as a laxative. The local effect of the latex on the conjunctiva is congestion, epiphora and local anaesthesia. The latex contains a proteolytic enzyme called caloptropaine. The flower is digestive and tonic. It is used in the treatment of asthma and catarrh. The twigs are applied for the preparation of diuretics, stomach tonic and anti-diarrhoetics and for asthma. Also used in abortion, as an anthelmintic, for colic, cough, whooping cough, dysentery, headache, lice treatment, jaundice, sore gums and mouth, toothache, sterility, swellings and ulcers. Also, stem fibre used for various purposes, such as for making ropes, to form cheap cots, gunny bags, bow strings, fishing nets, and in the manufacture of paper, pulp and duplicating stencils.
K E Y W O R D S <i>Calotropis procera (</i> Aiton) <i>W. T.</i> Aiton, Medicinal composition, Industrial properties	

* Corresponding author: **Zahra Mohebi** E-mail: *z.mohebi@razi.ac.ir* Journal homepage:

ntroduction

Iran is one of the arid and semiarid regions of the world, located at a latitude of 25 to 38 degrees north. Drought has long been a serious threat to the Iranian Climate plateau. change. mismanagement of water resources. poor agricultural pattern, uncontrolled urban development declining and vegetation are some of the causes of drought. Drought is an ecological, agronomic and social phenomenon that causes great damage to human life and natural ecosystems (Petrasovic, 1995). Predictive models show that the world will experience a critical drought over the next four years (Lau and Kim, 2013). Due to its location in the arid region, Iran is one of the most seriously affected regions

(Lau and Kim. 2013). According the World to Resources Institute (WRI). Iran is one of the countries that will be under water stress by the year 2040 (Maddocks et al., 2015). Today, the phenomenon drought is of the most important threat to the survival of rural communities in the southern regions of Iran. One of the ways to deal with the threat of drought is to change the agricultural pattern to plants with little or no irrigation need (Razavi and Masoudifar, 2016). these, Calotropis Among (Calotropis procera (Aiton) W.T (Asclepiadaceae)) can be a suitable option due to its special characteristics. This shrub in Bushehr and Hormozgan is called Kharg and in the south of Kerman Sistan and and

Baluchestan is Korg and in Arabic it is called Estabarq.

Geographical distribution and ecology

Calotropis is native to tropical and subtropical Africa, Asia, and is abundant in the Middle East (Parsons and Cuthberston, 2001). *Calotropis* is distributed from West Africa to southern Angola, North and East Africa, Arabian Madagascar, the Peninsula, South Asia, Indo-China to Malaysia. It is also found in Australia and many Atlantic islands, Mexico, South and Central America, and the Caribbean (Rahman and Wilcock, 1991). It grows in arid habitats (150 to 1000 mm rainfall) and sometimes in welldrained soils in areas with more than 2000 mm annual rainfall. Calotropis may grow up to 1000 meters above sea level in India (Parrota, 2001). This plant is found in Iran in the tropics and southern coasts of the Oman Sea from Khuzestan to Makran Baluchistan at an altitude of 1100 meters above level (Akgul sea and Tozluoglu, 2009). Calotropis also resists in soils composed of sodium-saturated parent rocks. Sea salt spraying on the coast is also not harmful to Calotropis (Little et al., 1974).

In Iran, this plant grows in the southern and southeastern regions (Fars, Hormozgan, Bushehr, Khuzestan, Kerman, Baluchistan provinces). Mozaffarian (1991)also reported that Calotropis grows southern in the provinces including Hormozgan, Baluchistan and Khuzestan in these areas, there are relatively dense and widely distributed communities of this plant. In

Iran there are 2 species of the genus Calotropis including C. *Procera* and C. *gigantean*. The first species is growing in all areas and southern coasts and the second species in Baluchistan.

Propagation and growth of *Calotropis procera*

The plant is propagated by seeds, but although it produces a lot of seeds, it has little distribution. It seems that the establishment of this plant is naturally problematic. This plant produces bolls in which the seeds are located (Fig. 1). These bolls open naturally after ripening and the seeds come out (Katembe et al., 1998). *Calotropis* seeds lack initial dormancy, and the longer the seed is stored, the lower the germination rate and germination percent (Al-Sobhi et al., 2006). Germination determines the onset of plant growth, followed by seedling establishment is the most important stage in the plant life cycle (Delesalle and Blum, 1994). The seeds are dispersed by the wind. Seedlings may emerge from a rainy season, but only a few survive (Parsons and Cuthberston, 2001). Using the main nutrient root reserve. Calotropis can germinate again each year after a fire or cut (Hassan et al., 2015). The height of the stalk is usually up to about 2 m, but it can sometimes reach up to 5 m in height and 25 cm in diameter of the stem (Little et al., 1974). The root of this tree is 3-4 meters long, if the plant is damaged, the secondary root system, which is made of wood, can quickly reproduce the roots (Orwa et al., 2009).

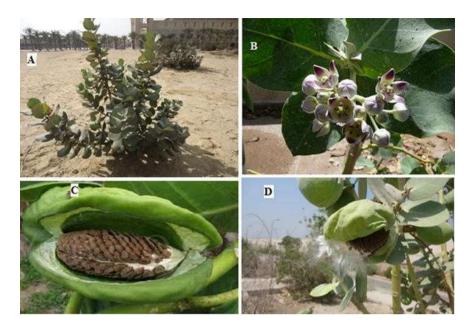


Fig. 1. *Calotropis procera* grows in monospecific stand, b open flowers, c dehiscent fruit showing *dark brown* seeds and d dispersal of seeds with *white silky* pappus

Salinity and drought resistance

Salinity is a limiting factor for the growth and production of various plants. In recent years, the trend of salinization of soils has increased and a large area of arable land has become uncultivable due to excessive accumulation of salt. Lands with different salinity soils cover an area of about 55.6 million hectares, most of which are located in the central plateau of the southern coastal plains of the country and the plain of Khuzestan (Momeni, 2009). *Calotropis* is reported as a resistant plant to relatively high levels of drought (Alcazar et al., 2011) and salinity, which typically grows in known

environments with severe drought characteristics, high temperatures and salinity stress (Khan et al., 2007). It is a drought-resistant desert shrub that can grow widely in desert, tropical, subtropical, arid and semi-arid regions and all desert areas of western India (Boutra, 2010).

Application in agriculture and environment

Establishment of Calotropis to protect the environment and as a nurse species is suitable for most valuable species, which is easily possible by planting potted seedlings or dividing the roots (Campolucci and Paolini, 1990; Fig. 2). In competition tall weeds. with shrubs. especially graminea, weaken Calotropis and overcome existing plants, but will remove the shade of their trees. This plant is sometimes cultivated in arid or coastal areas due to its beauty and suitable of size. ease reproduction and management. This plant is a useful biomarker for monitoring pollution in and suburban urban areas Calotropis has the property of bioaccumulation of heavy metals in its leaves and since this plant is able to live in most contaminated soils, it can be used as a strong bioremediation agent in contaminated areas, industrial wastewater or contaminated groundwater (D 'Souzza et al., 2010). Tree sap is used as an indicator of eroding soil in tropical West Africa (Leeuwenberg, 1987).

The valuable medicinal plant *Calotropis* has a high capacity to absorb heavy metals

in its tissues: without serious physiological damage (Al-Yemni et al., 2011). Calotropis is mentioned as copper, cadmium and zinc fixing plant and the accumulation of these elements in the roots of the plant is more than the leaves, based on which it can be considered a useful plant for decontamination of soil pollution (Al-Qahtani, 2012).

The observed differences in concentrations of barium. manganese, chromium and zinc between sediment samples in urban and suburban areas indicate that this plant has the necessary potential to absorb these elements (Altaf, 2006). The plant has also been reported to be used to removal of heavy metals such as cadmium and lead from soil, industrial wastewater contaminated or groundwater (D'Souza et al., 1987).

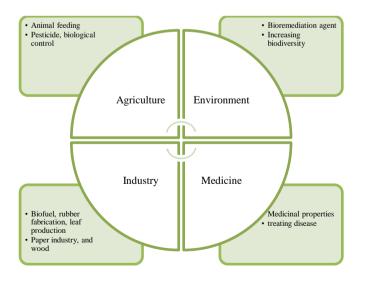


Fig.2. different application of Calotropis procera

Pesticide properties

Since the extract of Calotropis has high amounts of secondary plant compounds, its extract is a pesticide with a low line slope and has several points of action (Mirzaei et al., 2015; Fig. 2). harmful Considering the effects environmental of chemical pesticides and the low risk of plant compounds for humans and the environment, it seems that such secondary compounds can be used in the suitable short term as а alternative to pest control. *Calotropis* extract is an antioxidant and antiinflammatory property that has been used to treat farmed catfish (Sayed et al., 2016). The effect of Calotropis extract on three pathogenic bacteria of farmed fish has been proven

(Sancholi and Rigi, 2016). Calotropis has an allopathic effect on germination and rooting of other plants. The allochemical compounds in the leaves and roots of Calotropis have shown a strong barrier to germination, the growth of millet seeds. Therefore, due to allopathic its potential, Calotropis can be used as a biological control of weeds and insects (Samreen et al., 2009) and, of course, as a weed, it is considered а threat to agricultural fields (Yasin et al., 2012). This plant has antifungal properties and is used for fungal diseases of mango (Usha et al., 2009). Asparagus inhibits the growth of plants in the desert by producing toxins (Russell et al., 2011). The leaf extract of Calotropis has been used for biological control of

the leaf-eating pest *Spodoptera litur* (Bakavathiappan et al., 2012).

The reports on the bioactivity of extracts from both species are numerous, where the extracts have been utilized as herbicide, fungicide, nematicide. insecticide. acaricide, and as molluscicide. Traditionally, extracts from C. procera have been used alone or in combination with that of other plants, such as in a combination of the extract of C. procera flowers, Azadirachta indica and Nicotiana tabacum leaves. and Trachyspermum ammi seeds used against the cattle common tick Rhipicephalus *microplus* (Boophilus) (Al-Sulaibi et al., 2020).

Medicinal application

Calotropis tissues. especially the root bark, are used to treat various diseases such as leprosy, fever, malaria and snakebite (Parrota, 2001). Calotropis sap is toxic and can cause blistering, itching and irritation sensitive skin in individuals (Little et al., 1974). *Calotropis* has antioxidant. antimicrobial and anti-cellulite properties. In traditional medicine, its leaves, stems and roots are used to treat wounds and skin diseases, diarrhea, fistula and hair sinus disease (Moronkola et al., 2011). In coastal areas of Africa. the plant is used for dermatitis, dysentery and varicose veins (Von Maydell, 1986). In traditional Indian medicine. dried root powder is used effectively to treat bronchitis, asthma. liver and spleen diseases, and its sap is used to

treat hair loss, toothache, fever, swelling and tremors (Vohra, 2004). Calotropis leaves are used remedy for as а rheumatism, mumps and burns in India (Murti et al., 2010). Calotropis flowers are used to treat gastrointestinal complications, acne, in the West Coast and Central Africa (Von Maydell, 1986).

parts of *Calotropis* All procera, especially seeds and leachate, are often toxic and contain a variety of alkaloids and glycosides, many of which are used in pharmacy and as insecticides. The plant leachate analgesic has and wound healing properties and the plant root has contraceptive and antiproperties. The ulcer hepatoprotective and antioxidant properties of the plant have been attributed to

flavonoids in flowers (Qureshi et al., 2007).

Calotropis plant leachate is an important source of new compounds such as quercetin flavonoid flavonoids. glycosides, anthocyanins, resins. protein-digesting enzymes in leachate, tannins, sterols. saponins and triterpenoids (Khasawneh et al., 2011; Sharma et al., 2011). Chemical analysis of leaf extracts of the plant revealed the presence of compounds such as glycosides, proteins, triterpenoids, steroids and flavonoids, which indicates the medicinal importance and properties of the plant (Tiwari et al., 2014).

Phytochemical studies have shown that a variety of compounds such as triterpenes, triterpenoids (Tiwari et al.,

2014), phytosterols, saponins, alkaloids, cardinolides (Sommer and Saedler, 1986) are present in the plant. The presence of alkanes, alkenes, ketones and esters has also been reported in different parts of the plant (Feinbaum and Ausubel, 1988).

Industrial application

Research has shown that all components of the Calotropis shrub can be used in different applications (Fig. 2) (Hassan et al., 2015). All parts of this shrub, when cut down, are able to produce large amounts of white sap (Latex) (Mohamed et al., 2016). After separation by centrifugation, this iuice contains rubber, serum and oil (Mohamed et al., 2016). Calotropis is a source of bioenergy and biofuels in semiarid regions (Rathore and Menna. 2010). This plant contains valuable hydrocarbons that can replace diesel fuels (Choudhury and Singh 1993; The 2007). chemical composition of white sap is very complex, with 25 to 35% of it being made of natural rubber (cis-1,4-isopropane) (Rifaat et al., 2004). This natural sap is used as a raw material for making tires, gloves, seals, balloons, sports balls, etc. (Bode et al., 2000). The trunk of *Calotropis* can be comprehensively studied for use in lignocellulose industries such making as paper (Dehghani Firoozabadi et al., 2017). The fibers produced from this plant, unlike other natural cellulose fibers, have a low density (0.9 g/cubic centimeter) and an attempt has been made to use the raw inflorescence of this plant as a

filler in the jacket (Kamrani et al., 2010).

Within limits, the wood of C. procera is utilized as cooking fuel in some areas. Also, the plant is being studied extensively as a source of biofuel with the gross heat content of the plant estimated at 6.1 kcal/g. Erdman et al. (1981) give a heat value of the whole plant of 4.2 kcal/g, Radhaboy et al. (2019) put it at 5.2 kcal/g. The heat values of whole plant fractions extracted with benzene, with petroleum ether and with ethyl acetate have been given as 9.6 kcal/g, 13.7 kcal/g. and 7.4 kcal/g. respectively. Both the seeds of C. procera and C. gigantea are judged as having the potential of providing biodiesel conforming to European and ASTM standards

and have a relatively high oilcontent (*C. gigantea*: 31%; *C. procera*: 26%). In all published seed oil analyses of both *C. procera* and *C. gigantea*, oleic acid, palmitic acid, linoleic acid and stearic acid were the main constituents (Al-Sulaibi et al., 2020).

Decan hydrocarbon is an alkan with the chemical formula of $C_{10}H_{22}$. There are 75 structural isomers for the decan with almost similar properties. These isomers of decan are flammable liquids. The decan is part of diesel (gasoline) and white petrolreum. Like other alkanes, these compounds are non-polar solvents, do not dissolve in water, and are easily flammable (Alam and Ali 2009). Therefore, it can be used as fuel. The decan compounds are also used as solvents in the

paint. rubber and paper industries. The presence of decan compounds including pentadecan, hexadacan. in leaf. pentadecan docazenamide, isobutyl nonan, chromium methyl dodecan has been reported in the essential oil of Calotropis (Alam and Ali 2009). Doshi et al., (2012) reported the composition of decan and its derivatives including tetradcan, penta decan and trimethyl decatrin by examining the latex of compositions the plant. Dhivya Manimegalai and (2013)also detected the presence of pentadecanoic acid and octadecanoic acid methyl ester compounds by chromatogram analysis of GC/MS extract of Calotropis extract. Verma et al., (2013) also identified the presence of octadecanoic acid methyl and ethyl ester compounds in the ethanolic and chloroform extracts of *Calotropis* leaf.

Natural fibers are considered by researchers and craftsmen due to their properties such as low density, suitable availability, length. renewability and high strength in composite fabrication. especially a reinforcing as material in thermoplastic composites (Cristaldi et al., Calotropis has two 2010). types of fibers, including the fibers inside the fruit (short fibers) and the fibers in the stem bark (long fibers) (Figure 2) and has the potential to be used in the manufacture of wood composites and textiles (Reddy & 2009). Yang Also, Calotropis shrub with advantages such as low density and high percentage of cellulose, can provide suitable

composites and insulation boards (Tarbi et al., 2016).

The production of yarn from the fibers of the Calotropis shrub as a mixture has existed since ancient times: Due to the smooth, brittle and slippery surface of the fiber. it is possible to produce yarn in the form of 100% fiber with a special method and with new devices and equipment. To produce yarn, 100% starch is needed to first turn these fibers into an arranged form called wick, so that it can be turned into yarn in a spinning machine. Silk pitchers can be obtained from the Calotropis plant. Water vapor permeability is one of the most important properties of the fabric that has a direct impact on the comfort of clothing.

Conclusion

Calotropis procera and Calotropis gigantea are undemanding plants that, while being undesirable weeds in some regions, have economic potential as a source of fuel and chemical feedstock. The review showed their use in providing construction materials and. in their utilization limitations. as animal feed. Extracts of *C*. *procera* and *C*. gigantea are employed widely as natural pesticides. The application of the two plants in bioremediation efforts, including in the monitoring of environmental pollutants in soil the was discussed. also. Given the importance of this plant in rehabilitating arid and desert areas and turning them into economic areas, the study of how preserve and rehabilitate to

vegetation in natural resources is of particular importance and needs to be given special attention. Due to its great adaptation to environmental dehydration conditions and pharmaceutical and industrial applications, it can be a very economical alternative to lowvield and high-consumption irrigated crops.

On the other hand, this plant can be cultivated and developed well in lands and waters unsuitable for agriculture. Principled planning for the development of planting, rehabilitation, exploitation and protection of this plant in natural and agricultural fields can be an effective aid in job creation and sustainability of the rural community economy exposed to water stress.

Sponsor: This research has not received any financial support from funding organizations.

Conflict of interest: According to the author's statement, this article has no conflict of interest.

Derived from thesis/dissertation: This article is not derived from thesis/dissertation.

_

References

- Akgul M and Tozluoglu A, (2009) "Juvenile woods from beech (*Fagus orientalis* L) and pine (Pinus nigra A) plantations" Trends in Applied Sciences Research 4(2): 116-125.
- Al Sulaibi M. A. M, Carolin T and Thies T, (2020) "Chemical Constituents and Uses of Calotropis

Procera and Calotropis

Gigantea – A Review (Part I – The Plants as Material and Energy Resources)" Open Chemistry Journal 7:1-15.

 Alam P. and Ali M, (2009)
 "Phytochemical investigation of Calotropis procera Ait roots" Indian Journal of Chemistry 48: 443-446.

- Alcazar R., Bitrian M., Bartels
 D, Koncz C. & Altabella T,
 (2011) "Polyamine metabolic canalization in response to drought stress in Arabidopsis and the resurrection plant Craterostigma plantagineum"
 Plant signaling and behavior 6:243–250.
- Al-Qahtani Kh, (2012) "Assessment of heavy metals accumulation in native plant species from soil contaminated in Riyadh city" Saudi Arabia. Life Science Journal 9(2): 384-392.
 - Al-Sobhi O., Al –Zahrani A.,
 & Al-Ahmadi S, (2006)
 "Effect of salinity on chlorophyll and carbohydrate contents of Calotropis procera seedlings" Seed Res 8: 88-97.
- Altaf J, (2006) "Response of Calotropis procera for Urban,

Suburban and Sewage Pollution'' Umm Al-Qura Univ. J. Sci. Med. Eng 18(1): 31–40.

- Al-Yemni M.N, Sher H, Elsheikh M.A. & Eid, E.M (2011) "Bioaccumulation of nutrient and heavy metals by Calotropis procera and Citrullus colocynthis and their potential use as contamination indicators" Scientific Research and Essays 6(4): 966-976.
- Bakavathiappan G, Baskaran S, Pavaraj M., & Jeyaparvathi S, (2012) "Effect of Calotropis procera leaf extract on Spodoptera litura (Fab.)" Journal of Biopesticides 5(1): 135-138.
- Bode HB, Zeeck A, Hahn KP,
 & Jendrossek D (2000)
 "Physiological and chemical investigation into microbial degradation of Synthetic poly

(cis-1, 4-isoprene)" Applied and Environmental Microbiology 66: 3680-3685.

- Boutraa T (2010) "Growth performance and biomass partitioning of the desert shrub Calotropis procera under water stress conditions" Research Journal of Agriculture and Biological Sciences 6: 20–26.
- Campolucci P & Paolini C, (1990) "Desertification control in the Sahel regionslow- cost large-scale afforestation techniques" Desertification control in the Sahel regionslow-cost large-scale afforestation techniques. 10pp
 - Choudhury R & Singh R, (1993) "Enhanced hydrocarbon extraction from Calotropis procera—a petrocrop" Petrol Sci Technol 11 (5, 6):733–749.

_

- Cristaldi G, Latteri A, Recca G
 & Cicala G, (2010)
 "Composites based on natural fibre fabrics "Woven Fabric Engineering 17: 317-342.
- D'Souzaa RJ, Varuna M, _ Masihb J, & Paul M.S, (2010) "Identification of Calotropis procera L. as a potential phytoaccumulator of heavy metals from contaminated soils in urban North Central India" J Hazard Mater 184:457-464.
- Dehghani Firoozabadi M. _ Yadollahi R & Matini B.H. (2017)"Investigation of anatomical properties and chemical composition of shrub wood" Journal of Conservation and Exploitation of Natural Resources 5 (1): 52-37.

- Delesalle V, & Blum S, (1994) "Variation in germination and survival among families of Sagittaria latifolia in response to salinity and temperature" Inter. J. Plant Sci 155: 187-195.
- Dhivya R. & Manimegalai K,
 (2013) "Preliminary
 Phytochemical Screening and
 GCMS Profiling of Ethanolic
 Flower Extract of Calotropis
 gigantea Linn.(Apocynaceae)"
 Journal of Pharmacognosy and
 Phytochemistry 2(3): 28-32.
- Doshi H.V. Parabia F.M. _ Sheth F.K. Kothari I.L. Parabia M.H. & Ray A, (2012) "Phytochemical analysis revealing the presence of two new compounds from the latex of Calotropis procera (Ait.) R. Br" International Journal of Plant Research 2(2): 28-30.

Erdman M.D. & Erdman _ "Calotropis B.A. (1981) alternative procera as an of plant source hydrocarbons" Econ. Bot 35: 467-472.

- Feinbaum R.L, & Ausubel FM, (1988) "Transcriptional regulation of the Arabidopsis thaliana chalcone synthase gene" Molecular and Cellular Biology 8(5): 1985-1992.
- Ghahreman A, (1994)
 "Cormophytes of Iran (plant systematic)" Tehran:
 Publication of Center of University 2: 841.
- Hassan L. M, Galal T. M, Farahat E. A, & El-Midany M.
 M, (2015) "The biology of Calotropis procera (Aiton) WT" Trees 29(2): 311-320.
- Kamrani S, Sarayan, A.R & Akbarpour I, (2010) "Studying

from the Properties of Chemi-Mechanical Pulping and Alkaline Peroxide Mechanical Pulping of Wheat Straw Golestan province" Iranian Journal of Wood and Paper Science Research 25:1 (In Persian).

- Katembe, W., Ungar, I., & Mitchell, J. 1998. "Effect of salinity on germination and seedling growth of two Atriplex species (Chenopodiaceae)" Ann. Bot 82: 167-175.
- Khan R, Shahzad S, Choudhary M.I, Khan S.A & Ahmad A, (2007) "Biodiversity of the endophytic fungi isolated from Calotropis procera (Ait.) R. Br" Pakistan Journal of Botany 39: 2233-2239.
- Khasawneh MA, Elwy HM, Fawzi NM, & Hamza AA,

45

(2011) "Antioxidant Activity,
Lipoxygenase Inhibitory
Effect and Polyphenolic
Compounds from Calotropis
procera (Ait.) R. Br" Research
Journal of Phytochemistry
5(2): 80-88.

- Lau W. K.M, Wu H.T, & Kim
 K. M, (2013) "A canonical response of precipitation characteristics to global warming from CMIP5 models, Geophys" Res. Lett 40: 3163–3169.
- Leeuwenberg A.J.M, (1987)
 "Medicinal and poisonous plants of the tropics. Pudoc
 Wageningen, the Netherlands"
- Little EL, Woodbury R.O & Wadsworth F.H, (1974) "Trees of Puerto Rico and the Virgin Islands" vol. 2. Agriculture handbook 449. U.S.

Department of agriculture, Washington 1024pp

46

- Maddocks A, Young R. S, & Reig P, (2015) "Ranking the world's most water stressed countries in 2040" World Resources Institute, August 26.
- Mirzaei F, Sami M.A & Allahyari H (2015) "Bioof Chrysoperla parameters carnea (Stephens) by feeding on common pistachio psyllids treated with three plant the pesticide and extracts amitraz" Journal of Biological Control of Plant Pests and Diseases 3 (2): 151-164.
- Mohamed NH, Liu M, Abdel-Mageed WM, Alwahibi LH & Dai H, (2016) "Cytotoxic cardenolides from the latex of Calotropis procera" Bioorganic & Medicinal

47

Chemistry Letters 25: 4615-4620.

- Momeni A, (2009) Geographic distribution of soil salinity levels of Iran. Journal of soil science (soil and water) 24(3): 215-204 (in Persian).
- Moronkola D.O, Ogukwe C & Awokoya K.N, (2011)
 "Chemical compositions of leaf and stem essential oils of Calotropis procera Ait. R. Br [Asclepiadaceae]. Pelagia Res Libr Chem Sin 2(2):255–260.
- Mozaffarian V, (1991) Plant Systmematics. Amir Kabir University Press.
- Murti Y, Yogi B & Pathak D, (2010) "Pharmacognostic standardization of leaves of Calotropis procera (Ait.) R. Br. (Asclepiadaceae)" Int J Ayur Res 1(1):14–17.

- Orwa C, Mutua A, Kindt R, Jamnadass R & Antony S, (2009) "Agro- forestry database: a tree reference and selection guide version 4.0" World Agroforestry Center, Kenya.
- Parrotta J.A, (2001) "Healing plants of Peninsular India.
 CAB International, Wallingford, UK and New York. 944 pp.
- Parsons W.T & Cuthbertson
 E.G, (2001) Noxious weeds of
 Australia, Seconds edn. Csiro
 Publishing, Melborn 712pp.
- Petrasovich I, (1995) Drought
 in the Carpathians Basin- In:
 Proceedings of the
 International ICID Workshop
 on Drought in the Carpathians
 Region (Eds.: Vermes, L., and
 Mihalny, A.) 3-5 May,
 Budapest-Alsogod 7-14.

Journal of Medicinal Plants Biotechnology

_

- Oureshi AA, Prakash T, Patil T & Viswanath Swamv Α. (2007) "Hepatoprotective and antioxidant activities of flowers of Calotropis procera (Ait) R. Br. in CCl4 induced hepatic damage" Indian journal of experimental biology 45(3): 304-310.
- Radhaboy G, Pugazhvadivu M, Ganeshan P & Ramshankar P, (2019) "Analysis of Thermochemical behaviour of Calotropis procera parts for their

potentiality" International Journal of Ambient Energy 1-7.

 Rahman M. A & Wilcock C. C (1991) "A taxonomic revision of Calotropis (Asclepiadaceae)" Nordic Journal of Botany 11(3): 301-308.

- Rathore M & Menna R.K,
 (2010) "Potential of utilizing
 Calotropis procera flower
 biomass as a renewable source
 of energy" J phytol 2(1):18–83.
- Reddy N & Yang Y (2007)
 "Structure and properties of natural cellulose fibers obtained from sorghum leaves and stems" Journal of Agriculture Food and Chemistry 55 (14): 5569-5574.
- Rifaat H.M & Yosery M.A, (2004) "Identification and characterization of rubber degrading Actinobacteria" Applied Ecology and Environmental Research 2: 63-70.
- Russell D.J, Al Sayah M.H & Munir F.M, (2011) "Volatile compounds produced by Calotropis procera leaves that aid in the repulsion of grazers" J

Biodvers Ecol Sci 1(3):191– 196.

- Samreen U, Hussain F & Sher
 Z, (2009) "Allelopathic
 potential of Calotropis procera
 (Ait.) Ait" Pak J Pl Sci 15(1):7–
 14.
- Sancholi N & Rigi M, (2016)
 "Investigation of the effect of rattlesnake, tatura and Calotropis procera plant extracts on three species of fish pathogenic bacteria" Journal of Veterinary Research 1(2): 462-455.
- Saved A. E. D. H., Mohamed N. H., Ismail M. A., Abdel-Mageed, W. M. & Shoreit A. A, "Antioxidant (2016)and antiapoptotic activities of Calotropis procera latex on (Clarias Catfish gariepinus) exposed to toxic 4nonylphenol" Ecotoxicology

and environmental safety 128: 189-194.

- Sharma AK, Kharb R, Kaur R,
 (2011) Pharmacognostical aspects of calotropis procera
 (Ait.) R. Br. International Journal of Pharma and Bio Sciences 2(3): 480-488.
- Sommer H & Saedler H, (1986)
 "Structure of the chalcone synthase gene of Antirrhinum majus" Molecular Genetics and Genomics 202(3): 429-434.
 - Tarabi N, Musa Zadeh H, Jafari A & Taqi Zadeh Tameh J, (2016) "Evaluation of effective parameters in the separation of stalk fibers by mechanical method" Journal of Agricultural Machinery 6(2): 384 – 395.
 - Tiwari A, Singh S & Singh S,
 (2014) "Chemical Analysis of
 Leaf Extracts of Calotropis
 procera" International Journal

Journal of Medicinal Plants Biotechnology

of Scientific and Research Publications 4(1): 407-424.

- Usha K, Singh B, Praseetha P, Deepa N, Agarwal D. K, Agarwal R & Nagaraja A, (2009) "Antifungal activity of Datura stramonium, Calotropis gigantea and Azadirachta indica against Fusarium mangiferae and floral malformation in mango" European journal of plant pathology 124(4): 637-657.
- Varshney A, Bhoi K, (1988)
 "Cloth from bast fibre of the Calotropis procera (Aak) plant"
 Biological wastes 26(3): 229-232.
- Verma R, Satsangi G & Shrivastava J, (2013) "Analysis of phytochemical constituents of the ethanolic and chloroform extracts of Calotropis procera using gas chromatographymass

spectroscopy (GC-MS) technique" Journal of Medicinal Plants Research 7(40): 2986-2991.

50

- Vohra R, (20040 "Calotropis, the medicinal weed" Online medicinal bookstore India.
- Von Maydell H.J, (1986) "Trees and shrubs of the Sahel—their characteristics and uses"
- Yasin M, Safdar M.E, Iqbal Z,
 Ali A, Jabran K & Tanveer A,
 (2012) "Phytotoxic effects of
 Calotropis procera extract on
 germination and seedling vogor
 of wheat" Pak J Weed Sci Res
 18:379–392.